Larval dispersal connects fish populations in a network of marine protected areas

Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5693-7. doi: 10.1073/pnas.0808007106. Epub 2009 Mar 23.

Abstract

Networks of no-take marine protected areas (MPAs) have been widely advocated for the conservation of marine biodiversity. But for MPA networks to be successful in protecting marine populations, individual MPAs must be self-sustaining or adequately connected to other MPAs via dispersal. For marine species with a dispersive larval stage, populations within MPAs require either the return of settlement-stage larvae to their natal reserve or connectivity among reserves at the spatial scales at which MPA networks are implemented. To date, larvae have not been tracked when dispersing from one MPA to another, and the relative magnitude of local retention and connectivity among MPAs remains unknown. Here we use DNA parentage analysis to provide the first direct estimates of connectivity of a marine fish, the orange clownfish (Amphiprion percula), in a proposed network of marine reserves in Kimbe Bay, Papua New Guinea. Approximately 40% of A. percula larvae settling into anemones in an island MPA at 2 different times were derived from parents resident in the reserve. We also located juveniles spawned by Kimbe Island residents that had dispersed as far as 35 km to other proposed MPAs, the longest distance that marine larvae have been directly tracked. These dispersers accounted for up to 10% of the recruitment in the adjacent MPAs. Our findings suggest that MPA networks can function to sustain resident populations both by local replenishment and through larval dispersal from other reserves. More generally, DNA parentage analysis provides a direct method for measuring larval dispersal for other marine organisms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Conservation of Natural Resources / methods*
  • DNA / analysis*
  • Fishes
  • Larva / genetics*
  • Marine Biology / methods
  • New Guinea
  • Population Dynamics*

Substances

  • DNA