Imaging and quantification of isotachophoresis zones using nonfocusing fluorescent tracers

Anal Chem. 2009 Apr 15;81(8):3022-8. doi: 10.1021/ac802698a.

Abstract

We present a novel method for visualizing isotachophoresis (ITP) zones. We introduce negligibly small concentrations of a fluorophore that is not focused by isotachophoresis. This nonfocusing tracer (NFT) migrates through multiple isotachophoresis zones. As it enters each zone, the NFT concentration adapts to the local electric field in each zone. ITP zones can then be visualized with a point detector or camera. The method can be used to detect, identify, and quantify unknown analyte zones and can visualize complex and even transient electrophoresis processes. This visualization technique is particularly suited to microfluidic and laboratory-on-a-chip applications, as typical fluorescence microscopes and charge-coupled device (CCD) cameras can provide high-resolution spatiotemporal data. We present a theoretical description, a methodology for identifying analytes, and experimental validation. We also visualize and analyze a complex, transient DNA ITP preconcentration and separation.