Impact of metallophilicity on "colossal" positive and negative thermal expansion in a series of isostructural dicyanometallate coordination polymers

J Am Chem Soc. 2009 Apr 8;131(13):4866-71. doi: 10.1021/ja809631r.

Abstract

Five isostructural dicyanometallate coordination polymers containing metallophilic interactions (In[M(CN)(2)](3) (M = Ag, Au), KCd[M(CN)(2)](3), and KNi[Au(CN)(2)](3)) were synthesized and investigated by variable-temperature powder X-ray diffraction to probe their thermal expansion properties. The compounds have a trigonal unit cell and show positive thermal expansion (PTE) in the ab plane, where Kagome sheets of M atoms reside, and negative thermal expansion (NTE) along the trigonal c axis, perpendicular to these sheets. The magnitude of thermal expansion is unusually large in all cases (40 x 10(-6) K(-1) < |alpha| < 110 x 10(-6) K(-1)). The system with the weakest metallophilic interactions, In[Ag(CN)(2)](3), shows the most "colossal" thermal expansion of the series (alpha(a) = 105(2) x 10(-6) K(-1), alpha(c) = -84(2) x 10(-6) K(-1) at 295 K), while systems containing stronger Au-Au interactions show relatively reduced thermal expansion. Thus, it appears that strong metallophilic interactions hinder colossal thermal expansion behavior. Additionally, the presence of K(+) counterions also reduces the magnitude of thermal expansion.