Idiopathic pulmonary fibrosis and diffuse parenchymal lung disease: implications from initial experience with 18F-FDG PET/CT

J Nucl Med. 2009 Apr;50(4):538-45. doi: 10.2967/jnumed.108.057901. Epub 2009 Mar 16.

Abstract

The purpose of this study was to evaluate integrated (18)F-FDG PET/CT in patients with idiopathic pulmonary fibrosis (IPF) and diffuse parenchymal lung disease (DPLD).

Methods: Thirty-six consecutive patients (31 men and 5 women; mean age +/- SD, 68.7 +/- 9.4 y) with IPF (n = 18) or other forms of DPLD (n = 18) were recruited for PET/CT and high-resolution CT (HRCT), acquired on the same instrument. The maximal pulmonary (18)F-FDG metabolism was measured as a standardized uptake value (SUV(max)). At this site, the predominant lung parenchyma HRCT pattern was defined for each patient: ground-glass or reticulation/honeycombing. Patients underwent a global health assessment and pulmonary function tests.

Results: Raised pulmonary (18)F-FDG metabolism in 36 of 36 patients was observed. The parenchymal pattern on HRCT at the site of maximal (18)F-FDG metabolism was predominantly ground-glass (7/36), reticulation/honeycombing (26/36), and mixed (3/36). The mean SUV(max) in patients with ground-glass and mixed patterns was 2.0 +/- 0.4, and in reticulation/honeycombing it was 3.0 +/- 1.0 (Mann-Whitney U test, P = 0.007). The mean SUV(max) in patients with IPF was 2.9 +/- 1.1, and in other DPLD it was 2.7 +/- 0.9 (Mann-Whitney U test, P = 0.862). The mean mediastinal lymph node SUV(max) (2.7 +/- 1.3) correlated with pulmonary SUV(max) (r = 0.63, P < 0.001). Pulmonary (18)F-FDG uptake correlated with the global health score (r = 0.50, P = 0.004), forced vital capacity (r = 0.41, P = 0.014), and transfer factor (r = 0.37, P = 0.042).

Conclusion: Increased pulmonary (18)F-FDG metabolism in all patients with IPF and other forms of DPLD was observed. Pulmonary (18)F-FDG uptake predicts measurements of health and lung physiology in these patients. (18)F-FDG metabolism was higher when the site of maximal uptake corresponded to areas of reticulation/honeycomb on HRCT than to those with ground-glass patterns.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Diagnosis, Differential
  • Fluorodeoxyglucose F18*
  • Humans
  • Lung Diseases, Interstitial / diagnosis*
  • Male
  • Pilot Projects
  • Positron-Emission Tomography / methods*
  • Pulmonary Fibrosis / diagnosis*
  • Radiopharmaceuticals
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Subtraction Technique*

Substances

  • Radiopharmaceuticals
  • Fluorodeoxyglucose F18