Hypomethylation trends in the intergenic region of the imprinted IGF2 and H19 genes in cloned cattle

Anim Reprod Sci. 2009 Dec;116(3-4):213-25. doi: 10.1016/j.anireprosci.2009.02.008. Epub 2009 Feb 11.

Abstract

Bos taurus is a good model for embryo biotechnologies such as nuclear transfer. However, animals produced from these technologies often suffer from large calf syndrome, suggesting fetal growth dysregulation. The imprinted fetal mitogen IGF2 is clustered with H19 and the two genes are co-regulated in humans and mice. Although the allelic expression pattern of IGF2/H19 has been elucidated in agricultural species such as sheep and cattle, the underlying mechanism of their imprinting regulation has not been characterized. Using bisulfite sequencing the methylation status of 44 CpG sites in a CpG rich intergenic region of IGF2/H19 in the liver, brain, lung, kidney and placenta of control calves (produced by conventional breeding). One fragment containing 16 CpG sites was differentially methylated region (DMR), and thus may be important in regulating IGF2/H19 allelic expression. The DMR in tissues from cloned term calves that either died immediately after birth or were sacrificed due to complications shortly thereafter were examined. There were significant variations in the methylation of this DMR in some of the cloned animals compared to the controls. Most of the observed variations tended toward hypomethylation. The hypomethylation of this DMR in the liver and placenta of clones correlates with the previous observation of abnormal, biallelic expression of the H19 allele in those clones [Zhang, S., Kubota, C., Yang, L., Zhang, Y., Page, R., O'Neill, M., Yang, X., Tian, X.C., 2004. Genomic imprinting of H19 in naturally reproduced and cloned cattle. Biol. Reprod.] but not with allelic expression of IGF2 (as determined in this study). These data suggest that this DMR is involved in H19 allelic expression, but that other mechanisms probably regulate the expression of IGF2/H19. Contrary to global hypermethylation observed in cloned embryos, putative imprinting control regions can display hypomethylation trends in specific organs of cloned calves.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Animals, Newborn
  • Base Sequence
  • Cattle
  • Cloning, Organism* / veterinary
  • CpG Islands
  • DNA Methylation / physiology*
  • DNA, Intergenic / genetics*
  • Down-Regulation / genetics
  • Embryo, Mammalian
  • Female
  • Genomic Imprinting / physiology
  • Insulin-Like Growth Factor II / genetics*
  • Pregnancy
  • RNA, Long Noncoding
  • RNA, Untranslated / genetics*

Substances

  • DNA, Intergenic
  • H19 long non-coding RNA
  • RNA, Long Noncoding
  • RNA, Untranslated
  • Insulin-Like Growth Factor II