Switchable wiring for high-resolution electronic measurements at very low temperatures

Rev Sci Instrum. 2009 Feb;80(2):024704. doi: 10.1063/1.3073962.

Abstract

Low-temperature transport measurements with high energy resolution require effective filtering of high-frequency input. The high dc resistance of standard RC filters results in considerable heat input and hampers measurements with high currents or voltages. We developed a wiring scheme that incorporates a commercial latching relay at very low temperature between two sets of wires. In our application one set of wires comprises a voltage divider and a high-Ohmic reference resistance at low temperature as well. The other set has low dc resistance and no voltage divider. Both sets are high frequency filtered with very robust and compact filters, though, for insuring effective damping at gigahertz frequencies. We demonstrate that with the first set, we obtain a voltage resolution of 6 microV and a current resolution of 100 pA, which is sufficient for the recording and analysis of multiparticle transport in superconducting point contacts. The second set is used for electromigration experiments on superconducting point contacts and allows application of currents up to 1 mA and voltages up to 20 V, while the sample is at 1 K. More versatile applications of the scheme are possible.