Preliminary quantitative profile of differential protein expression between rat L6 myoblasts and myotubes by stable isotope labeling with amino acids in cell culture

Proteomics. 2009 Mar;9(5):1274-92. doi: 10.1002/pmic.200800354.

Abstract

Defining the mechanisms governing myogenesis has advanced in recent years. Skeletal-muscle differentiation is a multi-step process controlled spatially and temporally by various factors at the transcription level. To explore those factors involved in myogenesis, stable isotope labeling with amino acids in cell culture (SILAC), coupled with high-accuracy mass spectrometry (LTQ-Orbitrap), was applied successfully. Rat L6 cell line is an excellent model system for studying muscle myogenesis in vitro. When mononucleate L6 myoblast cells reach confluence in culture plate, they could transform into multinucleate myotubes by serum starvation. By comparing protein expression of L6 myoblasts and terminally differentiated multinucleated myotubes, 1170 proteins were quantified and 379 proteins changed significantly in fully differentiated myotubes in contrast to myoblasts. These differentially expressed proteins are mainly involved in inter-or intracellular signaling, protein synthesis and degradation, protein folding, cell adhesion and extracellular matrix, cell structure and motility, metabolism, substance transportation, etc. These findings were supported by many previous studies on myogenic differentiation, of which many up-regulated proteins were found to be involved in promoting skeletal muscle differentiation for the first time in our study. In summary, our results provide new clues for understanding the mechanism of myogenesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids / chemistry*
  • Animals
  • Cell Line
  • Cell Physiological Phenomena
  • Chromatography, Liquid
  • Gene Expression Regulation
  • Isotope Labeling / methods
  • Muscle Development
  • Muscle Fibers, Skeletal / cytology
  • Muscle Fibers, Skeletal / physiology*
  • Muscle Proteins / analysis
  • Muscle Proteins / genetics*
  • Muscle Proteins / metabolism*
  • Myoblasts / cytology
  • Myoblasts / physiology*
  • Proteomics / methods*
  • Rats
  • Signal Transduction
  • Tandem Mass Spectrometry

Substances

  • Amino Acids
  • Muscle Proteins