Surface charge of polyoxometalates modulates polymerization of the scrapie prion protein

Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3740-5. doi: 10.1073/pnas.0812770106. Epub 2009 Feb 17.

Abstract

Prions are composed solely of an alternatively folded isoform of the prion protein (PrP), designated PrP(Sc). N-terminally truncated PrP(Sc), denoted PrP 27-30, retains infectivity and polymerizes into rods with the ultrastructural and tinctorial properties of amyloid. We report here that some polyoxometalates (POMs) favor polymerization of PrP 27-30 into prion rods, whereas other POMs promote assembly of the protein into 2D crystals. Antibodies reacting with epitopes in denatured PrP 27-30 also bound to 2D crystals treated with 3 M urea. These same antibodies did not bind to either native PrP(Sc) or untreated 2D crystals. By using small, spherical POMs with Keggin-type structures, the central heteroatom was found to determine whether prion rods or 2D crystals were preferentially formed. An example of a Keggin-type POM with a phosphorous heteroatom is the phosphotungstate anion (PTA). Both PTA and a Keggin-type POM with a silicon heteratom have low-charge densities and favor formation of prion rods. In contrast, POMs with boron or hydrogen heteroatoms exhibiting higher negative charges encouraged 2D crystal formation. The 2D crystals of PrP 27-30 produced by selective precipitation with POMs were larger and more well ordered than those obtained by sucrose gradient centrifugation. Our findings argue that the negative charge of Keggin-type POMs determines the quaternary structure adopted by PrP 27-30. The mechanism by which POMs function in competing prion polymerization pathways--one favoring 2D crystals and the other, amyloid fibrils--remains to be established.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chemical Precipitation
  • Crystallization
  • Mice
  • PrPSc Proteins / chemistry*
  • PrPSc Proteins / ultrastructure
  • Protein Multimerization*
  • Surface Properties
  • Tungsten Compounds / chemistry*

Substances

  • PrPSc Proteins
  • Tungsten Compounds