One- and two-electron reactivity of a tantalum(V) complex with a redox-active tris(amido) ligand

J Am Chem Soc. 2009 Mar 11;131(9):3307-16. doi: 10.1021/ja808542j.

Abstract

A new redox-active, tris(amido) ligand platform, bis(2-isopropylamino-4-methoxyphenylamine [NNN(cat)](3-), has been prepared and used in the preparation of tantalum(V) complexes. The ligand was prepared in its protonated form by a three-step procedure from commercially available 4-methoxy-2-nitroaniline and 1-iodo-4-methoxy-2-nitrobenzene. Direct reaction of [NNN(cat)]H(3) with TaCl(2)Me(3) afforded five-coordinate [NNN(cat)]TaCl(2) (1), which accepted the strong sigma-donor ligand (t)BuNC to form the six-coordinate adduct [NNN(cat)]TaCl(2)(CN(t)Bu) (2). Complex 1 is formally a d(0), Ta(V) complex; however, one- and two-electron reactivity is enabled at the metal center by the redox-activity of the ligand platform. Complex 1 was oxidized by one electron to afford the radical species [NNN(sq*)]TaCl(3) (3), which was characterized by solution EPR spectroscopy. Cyclic voltammetry studies of complex 3 showed clean one-electron oxidation and reduction processes at 0.148 and -0.324 V vs [Cp(2)Fe](+/0), indicating the accessibility of three oxidation states, [NNN(cat)](3-), [NNN(sq*)](2-), and [NNN(q)](-), for the metallated ligand. Complex 1 also can undergo two-electron reactions, as evidenced by the reaction with nitrene transfer reagents to form tantalum imido species. Thus 1 reacted with organic azides, RN(3) (R = Ph, p-C(6)H(4)Me, p-C(6)H(4)(t)Bu), to form [NNN(q)]TaCl(2)(NR) (4). Similarly, the tantalum diphenylmethylidenehydrazido complex, [NNN(q)]TaCl(2)(NNCPh(2)) (5), was formed by reaction of 1 with the diazoalkane, N(2)CPh(2).

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amines / chemistry*
  • Electrons*
  • Ligands
  • Molecular Structure
  • Organometallic Compounds / chemical synthesis*
  • Organometallic Compounds / chemistry
  • Oxidation-Reduction
  • Tantalum / chemistry*

Substances

  • Amines
  • Ligands
  • Organometallic Compounds
  • Tantalum