Synthesis and self-assembly of polymer-coated ferromagnetic nanoparticles

ACS Nano. 2007 Nov;1(4):279-92. doi: 10.1021/nn7001213.

Abstract

We describe the synthesis and characterization of polymer-coated ferromagnetic cobalt nanoparticles (CoNPs). The synthesis of end-functionalized polystyrene surfactants possessing amine, carboxylic acid, or phosphine oxide end-groups was accomplished using atom-transfer radical polymerization. This versatile synthetic method enabled the production of multigram quantities of these polymeric surfactants that stabilized ferromagnetic CoNPs when dispersed in organic media. An in-depth investigation into the synthesis of polystyrene-coated ferromagnetic CoNPs was also conducted using various combinations of these polymeric surfactants in the thermolysis of dicobaltoctacarbonyl (Co(2)(CO)(8)). Moreover, the application of a dual-stage thermolysis with Co(2)(CO)(8) allowed for the preparation of large samples (200-820 mg) per batch of well-defined and dispersable ferromagnetic nanoparticles. Characterization of these functionalized nanoparticle materials was then done using transmission electron microscopy, X-ray diffraction, vibrating sample magnetometry, and thermogravimetric analysis. Self-assembly of these dipolar nanoparticles was investigated in solutions cast onto supporting substrates, where local nematic-like ordering of nanoparticle chains was observed along with a tendency of adjacent chains to form "zippering" configurations, both phenomena having been predicted by recent simulations of dipolar fluids in conjunction with van der Waals interactions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.