Removal of phosphorus from livestock effluents

J Environ Qual. 2009 Feb 6;38(2):576-86. doi: 10.2134/jeq2007.0641. Print 2009 Mar-Apr.

Abstract

For removal of phosphorus (P) from swine liquid manure before land application, we developed a treatment process that produces low P effluents and a valuable P by-product with minimal chemical addition and ammonia losses. The new wastewater process included two sequential steps: (i) biological nitrification and (ii) increasing the pH of the nitrified wastewater to precipitate P. We hypothesized that by reduction of inorganic buffers (NH(4)(+) and carbonate alkalinity) via nitrification, P could be selectively removed by subsequent hydrated lime [Ca(OH)(2)] addition. The objective of the study was to assess if this new treatment could consistently reduce inorganic buffer capacity with varied initial concentrations of N (100-723 mg NH(4)(+) L(-1)), P (26-85 mg TP L(-1)), and alkalinity (953-3063 mg CaCO(3) L(-1)), and then efficiently remove P from swine lagoon liquid. The process was tested with surface lagoon liquids from 10 typical swine farms in North Carolina. Each lagoon liquid received treatment in a nitrification bioreactor, followed by chemical treatment with Ca(OH)(2) at Ca rates of 0, 2, 4, 6, 8, 10, and 12 mmol L(-1) to precipitate P. This configuration was compared with a control that received the same Ca rates but without the nitrification pretreatment. The new process significantly reduced >90% the inorganic buffers concentrations compared with the control and prevented ammonia losses. Subsequent lime addition resulted in efficient pH increase to > or = 9.5 for optimum P precipitation in the nitrified liquid and significant reduction of effluent total P concentration versus the control. With this new process, the total P concentration in treated liquid effluent can be adjusted for on-farm use with up to >90% of P removal. The recovered solid Ca phosphate material can be easily exported from the farm and reused as P fertilizer. Therefore, the new process can be used to reduce the P content in livestock effluents to levels that would diminish problems of excess P accumulation in waste-amended soils.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bioreactors*
  • Calcium Compounds / chemistry
  • Carbonates / chemistry
  • Chemical Precipitation
  • Hydrogen-Ion Concentration
  • Oxides / chemistry
  • Phosphorus / isolation & purification*
  • Quaternary Ammonium Compounds / metabolism*
  • Swine
  • Waste Disposal, Fluid / methods*

Substances

  • Calcium Compounds
  • Carbonates
  • Oxides
  • Quaternary Ammonium Compounds
  • Phosphorus
  • lime