Synthesis and properties of phloroglucinol-phenol-formaldehyde carbon aerogels and xerogels

Langmuir. 2009 Feb 17;25(4):2461-6. doi: 10.1021/la803200b.

Abstract

Carbon aerogels and xerogels were successfully prepared from phloroglucinol-phenol mixtures and characterized by different techniques to determine their potential. We examined the influence of the phloroglucinol/phenol ratio, reactant concentration, cure conditions, and drying method on the morphology and porosity of the samples. The gelation time was found to be independent of the phloroglucinol/phenol ratio in spite of the different reactivities of both monomers. In general, carbon aerogels have a high volume of mesopores and of micropores without diffusion restrictions. Carbon xerogels are denser materials without mesopores but with a well-developed microporosity that shows a strong molecular sieve effect. Therefore, while micro-/mesoporous carbon aerogels can be used as catalyst supports or VOC adsorbents, the microporous carbon xerogel could offer high selectivity in the separation of small molecules from gaseous mixtures.