Understanding reductive dechlorination of trichloroethene on boron-doped diamond film electrodes

Environ Sci Technol. 2008 Dec 15;42(24):9344-9. doi: 10.1021/es801815z.

Abstract

This research investigated reduction of trichloroethylene (TCE) at boron-doped diamond (BDD) film cathodes using a rotating disk electrode reactor. Rates of TCE reduction were determined as functions of the electrode potential and TCE concentration over a temperature range between 2 and 32 degrees C. Reduction of TCE resulted in production of acetate and chloride ions with no detectable intermediate products. At a current density of 15 mA/cm2 and concentrations below 0.75 mM, reaction rates were first order with respect to TCE concentration, with surface area normalized rate constants 2 orders of magnitude greater than those for iron electrodes. Density functional theory (DFT) simulations were used to evaluate activation barriers for reduction by direct electron transfer, and for reaction with four functional groups commonly found on BDD surfaces. The DFT calculated activation barrier for direct electron transfer was more than 4 times greater than the experimentally measured value of 22 kJ/mol. In contrast, the DFT activation barrier for reaction at a deprotonated hydroxyl site on a tertiary carbon atom (triple bond C-O(-)) of 24 kJ/mol was in close agreement with the experimental value. Both experiments and quantum mechanical simulations support a TCE reduction mechanism that involves chemically adsorbed intermediates.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Boron / chemistry*
  • Diamond / chemistry*
  • Electrodes
  • Halogenation*
  • Models, Chemical
  • Oxidation-Reduction
  • Rotation
  • Thermodynamics
  • Trichloroethylene / chemistry*

Substances

  • Trichloroethylene
  • Diamond
  • Boron