Par-1 and Tau regulate the anterior-posterior gradient of microtubules in Drosophila oocytes

Dev Biol. 2009 Mar 15;327(2):458-64. doi: 10.1016/j.ydbio.2008.12.031. Epub 2009 Jan 3.

Abstract

The formation of an anterior-posterior (AP) gradient of microtubules in Drosophila oocytes is essential for specification of the AP axis. Proper microtubule organization in the oocyte requires the function of serine/threonine kinase Par-1. The N1S isoform of Par-1 is enriched at the posterior cortex of the oocyte from stage 7 of oogenesis. Here we report that posterior restriction of Par-1 (N1S) kinase activity is critical for microtubule AP gradient formation. Egg chambers with excessive and ectopic Par-1 (N1S) kinase activity in the germline cells display phenotypes similar to those of egg chambers treated with the microtubule-depolymerizing drug colcemid: depolymerization of microtubules in the oocyte and disruption of oocyte nucleus localization. A phosphorylation target of Par-1, the microtubule-associated protein Tau, is also involved in oocyte polarity formation, and overexpression of Tau alleviates the phenotypes caused by ectopic Par-1 (N1S) kinase activity, suggesting that Par-1 regulates oocyte polarity at least partly through Tau. Our findings reveal that maintaining proper levels of Par-1 at correct position in the oocyte is key to oocyte polarity formation and that the conserved role of Par-1 and Tau is crucial for the establishment of an AP gradient of microtubules and for AP axis specification.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Polarity*
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism*
  • Drosophila melanogaster / cytology*
  • Drosophila melanogaster / metabolism
  • Glycogen Synthase Kinase 3
  • Microtubules / metabolism*
  • Oocytes / cytology*
  • Oocytes / metabolism
  • Oogenesis / physiology*
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • tau Proteins / genetics
  • tau Proteins / metabolism*

Substances

  • Drosophila Proteins
  • Recombinant Fusion Proteins
  • tau Proteins
  • Protein Serine-Threonine Kinases
  • Glycogen Synthase Kinase 3
  • Par-1 protein, Drosophila