Flower extract of Panax notoginseng attenuates lipopolysaccharide-induced inflammatory response via blocking of NF-kappaB signaling pathway in murine macrophages

J Ethnopharmacol. 2009 Mar 18;122(2):313-9. doi: 10.1016/j.jep.2008.12.024. Epub 2008 Dec 27.

Abstract

Aim of the study: The root of Panax notoginseng (PN) is commonly used to treat chronic liver disease with its therapeutic abilities to stop haemorrhage in the circulation, while the PN flower (PN-F) is largely unknown in the biological activities on inflammation and mechanisms of its actions. In this study, the pharmacologic effects of PN-F methanol extract on inflammation were investigated to address potential therapeutic or toxic effects in LPS-stimulated mouse macrophage cells, RAW264.7 cells.

Materials and methods: Production of NO, PGE2 and pro-inflammatory cytokines (TNF-alpha and IL-1beta) in supernatant, the expression of iNOS, COX-2 and cytokines, the phosphorylation of MAPK molecules (ERK1/2, JNK and p38 MAPK), and the activation of NF-kappaB in PN-F extract were assayed in LPS-stimulated RAW264.7 cells.

Results: PN-F extract significantly inhibited the productions of NO, PGE2, TNF-alpha and IL-1beta on the LPS-stimulated RAW264.7 cells. In addition, PN-F extract suppressed the mRNA and protein expressions of iNOS, COX-2, TNF-alpha and IL-1beta in LPS-stimulated RAW264.7 cells. The molecular mechanism of PN-F extract-mediated attenuation in RAW264.7 cells has close a relationship to suppressing the phosphorylation of MAPK molecules such as ERK1/2, JNK and p38 MAPK, and the translocation of NF-kappaB p65 subunit into nuclear.

Conclusion: These results indicate that PN-F extract inhibits LPS-induced inflammatory response via the blocking of NF-kappaB signaling pathway in macrophages, and demonstrated that PN-F extract possesses anti-inflammatory properties in vitro.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Inflammatory Agents / pharmacology*
  • Cell Line
  • Cyclooxygenase 2 / metabolism
  • Dinoprostone / antagonists & inhibitors
  • Extracellular Signal-Regulated MAP Kinases / metabolism
  • Flowers
  • I-kappa B Kinase / metabolism
  • Inflammation
  • Interleukin-1beta / metabolism
  • JNK Mitogen-Activated Protein Kinases / metabolism
  • Lipopolysaccharides
  • Macrophages
  • Mice
  • NF-kappa B / metabolism*
  • Nitric Oxide / metabolism
  • Nitric Oxide Synthase Type II / antagonists & inhibitors*
  • Nitric Oxide Synthase Type II / metabolism
  • Panax notoginseng*
  • Plant Extracts / pharmacology*
  • Signal Transduction / drug effects
  • Tumor Necrosis Factor-alpha / metabolism
  • p38 Mitogen-Activated Protein Kinases / metabolism

Substances

  • Anti-Inflammatory Agents
  • Interleukin-1beta
  • Lipopolysaccharides
  • NF-kappa B
  • Plant Extracts
  • Tumor Necrosis Factor-alpha
  • Nitric Oxide
  • Nitric Oxide Synthase Type II
  • Cyclooxygenase 2
  • I-kappa B Kinase
  • Extracellular Signal-Regulated MAP Kinases
  • JNK Mitogen-Activated Protein Kinases
  • p38 Mitogen-Activated Protein Kinases
  • Dinoprostone