Adaptation of a seedling micro-grafting technique to the study of long-distance signaling in flowering of Arabidopsis thaliana

J Plant Res. 2009 Mar;122(2):201-14. doi: 10.1007/s10265-008-0209-1. Epub 2009 Jan 15.

Abstract

Long-distance signaling via phloem tissues is an important mechanism for inter-organ communication. Such communication allows plants to integrate environmental information into physiological and developmental responses. Grafting has provided persuasive evidence of long-distance signaling involved in various processes, including flowering, tuberization, nodulation, shoot branching, post-transcriptional gene silencing, and disease resistance. A micro-grafting technique to generate two-shoot grafts is available for young seedlings of Arabidopsis thaliana and was adapted for use in the study of flowering. Histological analysis using transgenic plants expressing beta-glucuronidase (GUS) in phloem tissues showed that phloem continuity between a stock and a scion was established between 7 and 10 days after grafting. Experiments using tracer dyes and enhanced green fluorescent protein (EGFP) showed that the phloem connection was functional and capable of effecting macromolecular transmission. Successful grafts can be obtained at high frequency (10-30%) and selected after 2-3 weeks of post-surgery growth. This method was applied successfully to the study of flowering, one of the important events regulated by long-distance signaling. This grafting technique will facilitate the study of the long-distance action of genes involved in various aspects of growth and development, and in transport of signal molecules.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / growth & development
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins / metabolism
  • Flowers / growth & development*
  • Genes, Plant
  • Hypocotyl / physiology
  • Seedlings / metabolism*
  • Signal Transduction*

Substances

  • Arabidopsis Proteins