In vitro model for testing novel implants for equine laryngoplasty

Vet Surg. 2008 Aug;37(6):588-93. doi: 10.1111/j.1532-950X.2008.00424.x.

Abstract

Objective: To develop an in vitro laryngeal model to mimic airflow and pressures experienced by horses at maximal exercise with which to test laryngoplasty techniques.

Study design: Randomized complete block.

Sample population: Cadaveric equine larynges (n=10).

Methods: Equine larynges were collected at necropsy and a bilateral prosthetic laryngoplasty suture was placed with #5 Fiberwire suture to achieve bilateral maximal arytenoid abduction. Each larynx was positioned in a flow chamber and subjected to static flow and dynamic flow cycling at 2 Hz. Tracheal pressure and flow, and pressure within the flow chamber were recorded at a sampling frequency of 500 Hz. Data obtained were compared with the published physiologic values for horses exercising at maximal exercise.

Results: Under static flow conditions, the testing system produced inspiratory tracheal pressures (mean+/-SEM) of -33.0+/-0.98 mm Hg at a flow of 54.48+/-1.8 L/s. Pressure in the flow chamber was -8.1+/-2.2 mm Hg producing a translaryngeal impedance of 0.56+/-0.15 mm Hg/L/s. Under dynamic conditions, cycling flow and pressure were reproduced at a frequency of 2 Hz, the peak inspiratory (mean+/-SEM) pharyngeal and tracheal pressures across all larynges were -8.85+/-2.5 and -35.54+/-1.6 mm Hg, respectively. Peak inspiratory flow was 51.65+/-2.3 L/s and impedance was 0.57+/-0.06 mm Hg/L/s.

Conclusions: The model produced inspiratory pressures similar to those in horses at maximal exercise when airflows experienced at exercise were used.

Clinical relevance: This model will allow testing of multiple novel techniques and may facilitate development of improved techniques for prosthetic laryngoplasty.

MeSH terms

  • Animals
  • Cadaver
  • Hemiplegia / surgery
  • Hemiplegia / veterinary
  • Horse Diseases / pathology
  • Horse Diseases / surgery*
  • Horses
  • In Vitro Techniques
  • Laryngectomy / methods
  • Laryngectomy / veterinary
  • Larynx / surgery*
  • Physical Conditioning, Animal*
  • Random Allocation
  • Treatment Outcome
  • Vocal Cord Paralysis / surgery
  • Vocal Cord Paralysis / veterinary*
  • Vocal Cords / surgery