Microchips for CE: breakthroughs in real-world food analysis

Electrophoresis. 2008 Dec;29(24):4852-61. doi: 10.1002/elps.200800346.

Abstract

The well-known complexity of food matrices is approached using CE microchips with different strategies to improve the selectivity and sensitivity of the analysis by avoiding and/or making the sample preparation as simple as possible: (i) enhancing the peak capacity in order to perform direct injection, (ii) using the microchip platform to measure one target analyte/group of analytes with or without separating other related interferences, (iii) integrating sample preparation steps on the microchip platform, and (iv) integrating new analytical tools from nanotechnology in the detection stage. New analyte separations of food significance involving DNA probes, biogenic amines, vanilla flavors, and dyes have been reported as successfully breaking new barriers in areas of high impact in the market, such as transgenic food analysis, as well as the detection of frauds and toxins. Simple microchip layouts are still the most common designs used, though sophisticated new ones are emerging. In contrast to other application areas, electrochemical detection continues to be the most common detection route, followed by LIF, though non-conventional detection routes are also emerging, such as chemiluminescence or UV. In terms of analytical performance, the integration of calibration and quality control on a microchip platform, and remarkable accuracy and precision are being obtained using creative analytical methodologies that enhance the analytical potency of microfluidic chips for their future commercialization. This review critically states the most important advances derived from work done in the field over the past 2-3 years.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Electrophoresis, Capillary / instrumentation
  • Electrophoresis, Microchip / instrumentation
  • Electrophoresis, Microchip / methods*
  • Food Analysis / methods*