Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray

Bioprocess Biosyst Eng. 2009 Aug;32(5):681-8. doi: 10.1007/s00449-008-0292-7. Epub 2009 Jan 6.

Abstract

In industrial process, yeast cells are exposed to ethanol stress that affects the cell growth and the productivity. Thus, investigating the intracellular state of yeast cells under high ethanol concentration is important. In this study, using DNA microarray analysis, we performed comprehensive expression profiling of two strains of Saccharomyces cerevisiae, i.e., the ethanol-adapted strain that shows active growth under the ethanol stress condition and its parental strain used as the control. By comparing the expression profiles of these two strains under the ethanol stress condition, we found that the genes related to ribosomal proteins were highly up-regulated in the ethanol-adapted strain. Further, genes related to ATP synthesis in mitochondria were suggested to be important for growth under ethanol stress. We expect that the results will provide a better understanding of ethanol tolerance of yeast.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological / physiology
  • Ethanol / metabolism*
  • Gene Expression Profiling / methods*
  • Gene Expression Regulation, Fungal / physiology*
  • Oligonucleotide Array Sequence Analysis / methods*
  • Saccharomyces cerevisiae / physiology*
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*

Substances

  • Saccharomyces cerevisiae Proteins
  • Ethanol