Microfluidic control of cell pairing and fusion

Nat Methods. 2009 Feb;6(2):147-52. doi: 10.1038/nmeth.1290. Epub 2009 Jan 4.

Abstract

Cell fusion has been used for many different purposes, including generation of hybridomas and reprogramming of somatic cells. The fusion step is the key event in initiation of these procedures. Standard fusion techniques, however, provide poor and random cell contact, leading to low yields. We present here a microfluidic device to trap and properly pair thousands of cells. Using this device, we paired different cell types, including fibroblasts, mouse embryonic stem cells and myeloma cells, achieving pairing efficiencies up to 70%. The device is compatible with both chemical and electrical fusion protocols. We observed that electrical fusion was more efficient than chemical fusion, with membrane reorganization efficiencies of up to 89%. We achieved greater than 50% properly paired and fused cells over the entire device, fivefold greater than with a commercial electrofusion chamber and observed reprogramming in hybrids between mouse embryonic stem cells and mouse embryonic fibroblasts.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Fusion / methods*
  • Cell Line, Tumor
  • Electroporation / methods
  • Embryonic Stem Cells
  • Image Processing, Computer-Assisted / methods
  • Mice
  • Microfluidic Analytical Techniques / instrumentation*
  • Microfluidic Analytical Techniques / methods
  • NIH 3T3 Cells
  • Polyethylene Glycols / pharmacology

Substances

  • Polyethylene Glycols