[Overview of 40 years' chemical study]

Yakugaku Zasshi. 2009 Jan;129(1):107-34. doi: 10.1248/yakushi.129.107.
[Article in Japanese]

Abstract

1,6-Dihydro-3(2H)-pyridinone, designed as a common synthon for synthesis of various natural products, was found to be easily prepared in large scale and successfully used to synthesize a variety of alkaloids such as ibogamine, quinine and tecomanine. A tricyclo[3.3.0.0(2.8)]octane was also served as a common synthon for several sesquiterpenes such as pentalenene and quadrone. Synthetic studies by using sulfinyl chirality via an intramolecular Michael addition gave the novel route to construct spiro-ketal moiety in enantiomerically pure form. By applying this method, many natural spiro-ketal compounds were asymmetrically synthesized effectively. 3-Sulfinylated 1,4-dihydropyridine, a chiral NADH model compound, reduced activated ketones such as methyl benzoylformate to give the corresponding alcohols in excellent optical yields. A kind of 3-O-substituted pyridoxal chiral model compound was useful for preparation of alpha,alpha-dialkylated alpha-amino acids by asymmetric alpha-alkylation of alpha-amino acids. 2'-O,4'-C-Bridged nucleic acid analogs, BNAs, developed as novel type of artificial nucleic acids, showed an extraordinarily high binding affinity toward single stranded RNA and double stranded DNA complements along with excellent nuclease-resistant ability. Oligonucleotides containing BNA monomer units were proved to be very useful for various biotechnologies, such as antisense and antigene methodologies.

Publication types

  • English Abstract
  • Review

MeSH terms

  • Biological Products / chemical synthesis*
  • Biotechnology
  • Chemistry / methods
  • Chemistry / trends*
  • Nucleic Acids
  • Oligonucleotides

Substances

  • Biological Products
  • Nucleic Acids
  • Oligonucleotides