Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells

Lab Chip. 2009 Jan 21;9(2):263-8. doi: 10.1039/b810419k. Epub 2008 Oct 23.

Abstract

Transparent oxide rolled-up microtube arrays were constructed on Si substrates by the deposition of a pre-stressed oxide layer on a patterned photoresist sacrificial layer and the subsequent removal of this sacrificial layer. These microtubes as well as their arrays can be well positioned onto a chip for further applications, while their dimensions (e.g. length, diameter and wall thickness) are controlled by tunable parameters of the fabrication process. Due to the unique tubular structure and optical transparency, such rolled-up microtubes can serve as well-defined two-dimensionally (2D) confined cell culture scaffolds. In our experiments, yeast cells exhibit different growth behaviors (i.e. their arrangement) in microtubes with varied diameters. In an extremely small microtube the yeast cell becomes highly elongated during growth but still survives. Detailed investigations on the behavior of individual yeast cells in a single microtube are carried out in situ to elucidate the mechanical interaction between microtubes and the 2D confined cells. The confinement of tubular channels causes the rotation of cell pairs, which is more pronounced in smaller microtubes, leading to different cellular assemblies. Our work demonstrates good capability of rolled-up microtubes for manipulating individual and definite cells, which promises high potential in lab-on-a-chip applications, for example as a bio-analytic system for individual cells if integrated with sensor functionalities.

MeSH terms

  • Cell Culture Techniques*
  • Saccharomyces cerevisiae / cytology*
  • Tissue Scaffolds