cGK substrates

Handb Exp Pharmacol. 2009:(191):163-93. doi: 10.1007/978-3-540-68964-5_9.

Abstract

Signalling of cGK (cGMP-dependent protein kinases) are mediated through phosphorylation of specific substrates. Several substrates of cGKI and cGKII were identified meanwhile. Some cGKI substrates are specifically regulated by the cGKIalpha or the cGKIbeta isozyme. In various cells and tissues, different cGK substrates exist that are essential for the regulation of diverse functions comprising tissue contractility, cell motility, cell contact, cellular secretion, cell proliferation, and cell differentiation. On the molecular level, cGKI substrates fulfill various cellular functions regulating e.g. the intracellular calcium and potassium concentration, the calcium sensitivity, and the organisation of the intracellular cytoskeleton. cGKII substrates are involved e.g. in chloride transport, sodium/proton transport and transcriptional regulation. The understanding of cGK signalling and function depends strongly on the identification of further specific substrates. In the last years, diverse approaches ranging from biochemistry to genetic deletion lead to the identification and establishment of several substrates, which raised new insights in the molecular mechanisms of cGK functions and elucidated new cellular cGK functions. However, the analysis of the dynamic signalling of cGK in tissues and cells will be necessary to discover new signalling pathways and substrates.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cyclic GMP-Dependent Protein Kinase Type I
  • Cyclic GMP-Dependent Protein Kinase Type II
  • Cyclic GMP-Dependent Protein Kinases / metabolism*
  • Humans
  • Peptides / metabolism
  • Phosphorylation / physiology
  • Proteins / metabolism
  • Signal Transduction*
  • Substrate Specificity

Substances

  • Peptides
  • Proteins
  • Cyclic GMP-Dependent Protein Kinase Type I
  • Cyclic GMP-Dependent Protein Kinase Type II
  • Cyclic GMP-Dependent Protein Kinases
  • PRKG1 protein, human
  • PRKG2 protein, human