Synthesis and structure of electron rich ruthenium polyhydride complexes and clusters containing AlCp* and GaCp*

Dalton Trans. 2009 Jan 14:(2):322-9. doi: 10.1039/b807917j. Epub 2008 Nov 6.

Abstract

The reactions of the ruthenium hydride complexes [{Ru(COD)(H)(NH2NMe2)3}{BArF}] (BArF=B{C6H3(CF3)2}4), [{Cp*Ru}2(micro-H)4] and [{Cp*Ru}3(micro-H)3(micro3-H)2] with GaCp* and AlCp* are investigated. The reaction of [{Ru(COD)(H)(NH2NMe2)3}{BArF}] with GaCp* leads to substitution of the hydrazine ligands by GaCp* and the formation of [{Ru(COD)(H)(GaCp*)3}{BArF}] (), while the reactions of [{Cp*Ru}2(micro-H)4] and [{Cp*Ru}3(micro-H)3(micro3-H)2] with ECp* (E=Al, Ga) results in the formation of the polyhydride clusters [{Cp*Ru(micro-H)(H)(micro-ECp*)}2] (, E=Ga; , E=Al) and [{Cp*Ru}3(micro-H)5(micro3-ECp*)] (, E=Al; , E=Ga). All Ru complexes react upon coordination of the group 13 ligand without loss of H2 or reductive elimination of Cp*H and without insertion into the Ru-H bonds; some of the products, however, showing Ru-H-E bridging motifs. All compounds were characterized by NMR spectroscopy, elemental analysis and single crystal X-ray diffraction studies.