Improvement of analytical performances of a disposable electrochemical immunosensor by using magnetic beads

Talanta. 2007 Sep 15;73(2):394-9. doi: 10.1016/j.talanta.2007.03.025. Epub 2007 Mar 24.

Abstract

A comparison of two electrochemical immunosensing strategies for PCBs detection, based on the use of two different solid phases, is here discussed. In both cases, carbon-based screen-printed electrodes (SPEs) are used as transducers in a direct competitive immunoassay scheme, where PCBs in solution compete with the tracer PCB28-alkaline phosphatase (AP) labeled for antibodies immobilized onto the solid-phase. In the standard format (called EI strategy), SPEs are both the solid-phase for immunoassay and electrochemical transducers: in this case the immunochemical reaction occurs onto the working electrode. Finally, the enzymatic substrate is added and an electroactive product is generated and detected by electrochemical measurement. In order to improve the performances of the system, a new approach (called EMI strategy) is developed by using functionalized magnetic beads as solid phase for the competitive assay; only after the immunosensing step they are captured by a magnet onto the working surface of the SPE for the electrochemical detection. Experimental results evidenced that the configuration based on the use of separate surfaces for immunoassay and for electrochemical detection gave the best results in terms of sensitivity and speed of the analysis. The improvement of analytical performances of the immunosensor based on EMI strategy was also demonstrated by the analysis of some spiked samples.