Key role of Ti(IV) in the selective radical-radical cross-coupling mediated by the Ingold-Fischer effect

J Am Chem Soc. 2008 Dec 31;130(52):18018-24. doi: 10.1021/ja807613q.

Abstract

We report an innovative approach for the selective synthesis of polyfunctional derivatives by cross-combination of different radicals generated under mild conditions. The coordinating effect of Ti(IV) plays a key role in the reaction mechanism: due to its chelating action on the hydroxyl groups, it promotes the homolytic C-C bond cleavage of alpha,beta-dihydroxy ketones by enhancing the captodative effect and the consequent stabilization of the corresponding alpha-hydroxy-alpha-carbonyl radicals. When these radicals are generated in the presence of stoichiometric amounts of TiCl(4) and 2,2'-azo-bis-isobutyronitrile (AIBN) is employed as a source of alpha-cyanoisopropyl radicals, the selective radical-radical cross-coupling is observed, affording the corresponding beta-hydroxynitriles in high yields. This innovative methodology allows application of the well-known Ingold-Fischer effect to a wider range of stabilized carbon-centered radicals, whose formation derives from the chelating action of Ti(IV).