High order reflectivity of highly oriented pyrolytic graphite crystals for x-ray energies up to 22 keV

Rev Sci Instrum. 2008 Oct;79(10):10E311. doi: 10.1063/1.2966378.

Abstract

We used Kr K alpha (12.6 keV), Zr K alpha (15.7 keV), and Ag K alpha (22.2 keV) x-rays, produced by petawatt-class laser pulses, to measure the integrated crystal reflectivity R(int) of flat highly oriented pyrolytic graphite (HOPG) up to the fifth order. The maximum R(int) was observed in first order (3.7 mrad at 12.6 keV), decreasing by a factor of 3-5 for every successive order, and dropping by a factor of 2-2.5 at 22.2 keV. The current study indicates that HOPG crystals are suitable for measuring scattering signals from high energy x-ray sources (E > or = 20 keV). These energies are required to penetrate through the high density plasma conditions encountered in inertial confinement fusion capsule implosions on the National Ignition Facility.