Regulated autocrine growth of CHO cells

Cytotechnology. 2000 Oct;34(1-2):39-46. doi: 10.1023/A:1008194529175.

Abstract

The goal of this work was to engineer a CHO cell line capable ofautocrine growth in a fully defined protein-free medium. Thiswas accomplished by stable integration of the genes encodinginsulin-like growth factor I (IGF-I) and transferrin into thegenome of a CHO-K1 cell line. Thelac operator/repressorsystem was used to regulate the expression of the IGF-I gene with thelac operator sequence being placed upstream ofthe coding sequence for IGF-I. The expression of thelacrepressor protein was driven by a modified metallothioneinpromoter allowing repressor expression to be regulated by theculture medium. The cell line calledSuper CHO(r) (r for regulated) was able to grow in protein-free medium in an autocrine fashion with a doubling time of 20-24 hr,either attached to microcarriers or as aggregate suspensioncultures. Upon addition of metal to the culture medium, therepressor protein was produced and bound to the operatorsequences shutting down the expression of IGF-I and arrestingthe growth of the cells. Expression of the human growth hormone(hGH) gene and production of hGH was induced by the presence ofmetal ions. It was possible to release the cells from growtharrest in the presence of metal by the addition of isopropylbeta-D-thiogalactopyranoside (IPTG), which prevented bindingof the repressor to its operator sequences. The ability to growCHO cells in fully defined protein-free medium and to be able toregulate their growth rate offers a number of advantages for theuse of these cells as hosts for the production of recombinantDNA derived proteins.