Increased apo A-I and apo A-II fractional catabolic rate in patients with low high density lipoprotein-cholesterol levels with or without hypertriglyceridemia

J Clin Invest. 1991 Feb;87(2):536-44. doi: 10.1172/JCI115028.

Abstract

Low HDL-cholesterol (HDL-C) levels may elevate atherosclerosis risk, and often associate with hypertriglyceridemia (HTG); however, the metabolic causes of low HDL-C levels with or without HTG are poorly understood. We studied the turnover of radioiodinated HDL apolipoproteins, apo A-I and apo A-II, in 15 human subjects with low HDL-C, six with normal plasma TG levels (group 1) and nine with high TG (group 2), and compared them to 13 control subjects with normal HDL-C and TG levels (group 3). The fractional catabolic rate (FCR) was equally elevated in groups 1 and 2 vs. group 3 for both apo A-I (0.313 +/- 0.052 and 0.323 +/- 0.063 vs. 0.245 +/- 0.043 pools/d, P = 0.003) and apo A-II (0.213 +/- 0.036 and 0.239 +/- 0.037 vs. 0.185 +/- 0.031 pools/d, P = 0.006). Thus, high FCR characterized low HDL-C regardless of the presence or absence of HTG. In contrast, transport rate (TR) of apo A-I did not differ significantly among the groups and the apo A-II TR differed only between groups 2 and 3 (2.15 +/- 0.57, 2.50 +/- 0.39, and 1.83 +/- 0.48 mg/kg per d for groups 1 to 3, respectively, P = 0.016). Several HDL-related factors were similar in groups 1 and 2 but differed in group 3, as with FCR, including the ratio of lipoprotein lipase to hepatic lipase activity (LPL/HL) in post-heparin plasma, the ratio of the HDL-C to apo A-I plus apo A-II levels, and the percent of tracer in the d greater than 1.21 fraction. In linear regression analysis HDL-C levels correlated inversely with the FCR of apo A-I and apo A-II (r = -0.74, P less than 0.0001 for both). Major correlates of FCR were HDL-C/apo A-I + apo A-II, LPL/HL, and plasma TG levels. We hypothesize that lipase activity and plasma TG affect HDL composition which modulates FCR, which in turn regulates HDL-C. Thus, HTG is only one of several factors which may contribute to elevated FCR and low HDL-C. Given the relationship of altered HDL composition with high FCR and low HDL-C levels, factors affecting HDL composition may increase atherosclerosis susceptibility.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Apolipoprotein A-I
  • Apolipoprotein A-II
  • Apolipoproteins A / metabolism*
  • Cholesterol, HDL / metabolism*
  • Female
  • Humans
  • Hypertriglyceridemia / metabolism*
  • Kinetics
  • Lipase / metabolism
  • Lipoprotein Lipase / metabolism
  • Liver / enzymology
  • Male

Substances

  • Apolipoprotein A-I
  • Apolipoprotein A-II
  • Apolipoproteins A
  • Cholesterol, HDL
  • Lipase
  • Lipoprotein Lipase