Aspects of linear and nonlinear instabilities leading to transition in pipe and channel flows

Philos Trans A Math Phys Eng Sci. 2009 Feb 13;367(1888):509-27. doi: 10.1098/rsta.2008.0189.

Abstract

The failure of normal-mode linear stability analysis to predict a transition Reynolds number (Retr) in pipe flow and subcritical transition in plane Poiseuille flow (PPF) has led to the search of other scenarios to explain transition to turbulence in both flows. In this work, various results associated with linear and nonlinear mechanisms of both flows are presented. The results that combine analytical and experimental approaches indicate the strong link between the mechanisms governing the transition of both flows. It is demonstrated that the linear transient growth mechanism is based on the existence of a pair of least stable nearly parallel modes (having opposite phases and almost identical amplitude distributions). The analysis that has been applied previously to pipe flow is extended here to a fully developed channel flow predicting the shape of the optimized initial disturbance (a pair of counter-rotating vortices, CVP), time for maximum energy amplification and the dependence of the latter on Re. The results agree with previous predictions based on many modes. Furthermore, the shape of the optimized initial disturbance is similar in both flows and has been visualized experimentally. The analysis reveals that in pipe flow, the transient growth is a consequence of two opposite running modes decaying with an equal decay rate whereas in PPF it is due to two stationary modes decaying with different decay rates. In the first nonlinear scenario, the breakdown of the CVPs (produced by the linear transient growth mechanism) into hairpin vortices is followed experimentally. The associated scaling laws, relating the minimal disturbance amplitude required for the initiation of hairpins and the Re, are found experimentally for both PPF and pipe flow. The scaling law associated with PPF agrees well with the previous predictions of Chapman, whereas the scaling of the pipe flow is the same as the one previously obtained by Hof et al. indicating transition to a turbulent state. In the second nonlinear scenario, the base flow of pipe when it is mildly deviated from the Poiseuille profile by an axisymmetric distortion is examined. The nonlinear features reveal a Retr of approximately 2000 associated with the bifurcation between two deviation solutions.