Parallelized hybrid TGRAPPA reconstruction for real-time interactive MRI

Med Image Comput Comput Assist Interv. 2008;11(Pt 2):163-70. doi: 10.1007/978-3-540-85990-1_20.

Abstract

Real-time parallel MRI reconstruction was demonstrated using a hybrid implementation of the TGRAPPA algorithm. The GRAPPA coefficients were calculated in k-space and applied in the image domain after appropriate transformation, thereby achieving improved speed and excellent image quality. Adaptive B1-weighted combining of the per coil images permitted use of pre-calculated composite image domain weights providing significant decrease in computation. The weight calculation was decoupled from the real-time image reconstruction as a parallel processing thread which was updated in an adaptive manner to speed convergence in the event of interactive change in scan plane. The computation was parallelized and implemented on a general purpose multi-core architecture. Reconstruction speeds of 65-70 frames per second were achieved with a matrix of 192 x 144 with 15 coils.

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Computer Systems
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods*
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • User-Computer Interface*