Voltammetry of redox analytes at trace concentrations with nanoelectrode ensembles

Talanta. 2004 Apr 19;62(5):1055-60. doi: 10.1016/j.talanta.2003.10.024.

Abstract

Gold nanoelectrodes ensembles (NEEs) have been prepared by electroless plating of Au nanoelectrode elements within the pores of a microporous polycarbonate template membrane. Cyclic voltammograms recorded in (ferrocenylmethyl) trimethylammonium hexafluorophosphate (FA(+) PF(6)(-)) solutions showed that these NEEs operate in the "total-overlap" response regime, giving well resolved peak shaped voltammograms. Experimental results show that the faradaic/background currents ratios at the NEE are independent on the total geometric area of the ensemble, so that NEE can be enlarged or miniaturized at pleasure without influencing the very favorable signal/noise ratio. Differential pulse voltammetry (DPV) at the NEE is optimized for direct determinations at trace levels. DPV at NEE allowed the determination (with no preconcentration) of trace amounts of FA(+), with a detection limit of 0.02muM. The use of NEE and DPV in cytochrome c (cyt c) solutions showed the possibility to observe the direct electrochemistry of submicromolar concentration of the protein, even without the need of adding any promoter or mediator.