Matrix isolation FTIR spectroscopic and theoretical study of 3,3-dichloro-1,1,1-trifluoropropane (HCFC-243)

J Phys Chem A. 2008 Nov 20;112(46):11641-8. doi: 10.1021/jp807388a. Epub 2008 Oct 29.

Abstract

The molecular structure and infrared spectrum of the atmospheric pollutant 3,3-dichloro-1,1,1-trifluoropropane (HCFC-243) were characterized experimentally and theoretically. The theoretical calculations show the existence of two conformers, with the gauche (G) and trans (T) orientation around the HCCC dihedral angle. Conformer G was calculated to be more stable than form T by more than 10 kJ mol (-1). In consonance with the large predicted relative energy of conformer T, only the G form was identified spectroscopically in cryogenic argon (10 K) and xenon (20 K) matrices prepared from room-temperature equilibrium vapor of the compound. The observed infrared spectra of the matrix-isolated HCFC-243 were interpreted with the aid of high-level density functional theory calculations and normal coordinate analysis. For experimental identification of the weakest IR absorption bands, the spectrum of HCFC-243 in the neat solid state at 145 K was obtained. This spectrum also confirmed the sole presence of the G conformer in the sample. Natural bond orbital and atomic charge analyses were carried out for the two conformers to shed light on the most important intramolecular interactions in the two conformers, in particular those responsible for their relative stability.