Method for purification of krypton from environmental samples for analysis of radiokrypton isotopes

Anal Chem. 2008 Nov 15;80(22):8688-93. doi: 10.1021/ac801804x. Epub 2008 Oct 24.

Abstract

Radiokrypton isotopes ((81)Kr and (85)Kr) are ideal tracers and chronometers of various environmental processes. Atom trap trace analysis (ATTA) is capable of determining the ultralow isotopic abundances of radiokryptons (<10(-12)) provided that 50 microL of pure Kr is available. The analysis by using ATTA of (81)Kr in naturally occurring gases of interest, e.g., dissolved gases in hydrological reservoirs, requires separation of parts-per-million (ppm) level Kr from chemically airlike bulk gas. A newly developed Kr purification system is based on conventional cryogenic distillation and gas chromatography to which continuous monitoring of gas effluent composition using a quadrupole mass spectrometer brings significant advantages. Simple cryogenic distillation is controlled based on the evolution of N2/Ar ratio that is relatively constant in naturally occurring, inorganic gas. Gas chromatographic separation of parts-per-million by volume (ppmv) level Kr from up to a few liters of bulk gas can be achieved by concentrating the Kr under the chromatographic tails of major components. The system described here is capable of extracting Kr of >98% purity from 5-125 L STP (standard temperature and pressure) of bulk gas with >90% yield within several hours. This system is generally useful for separation of microliter amounts of unreactive trace volatile compounds from large-volume gas samples.