Olefin metathesis catalysts bearing a pH-responsive NHC ligand: a feasible approach to catalyst separation from RCM products

Dalton Trans. 2008 Nov 14:(42):5791-9. doi: 10.1039/b809793c. Epub 2008 Sep 12.

Abstract

Two novel ruthenium-based olefin metathesis catalysts, H(2)ITap(PCy(3))Cl(2)Ru[double bond, length as m-dash]CH-Ph and H(2)ITapCl(2)Ru[double bond, length as m-dash]CH-(C(6)H(4)-O-iPr) (H(2)ITap = 1,3-bis(2',6'-dimethyl-4'-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene), were synthesized bearing a pH-responsive NHC ligand with two aromatic NMe(2) groups. The crystal structures of complexes and were determined via X-ray crystallography. Both catalysts perform ring opening metathesis polymerization (ROMP) of cyclooctene (COE) at faster rates than their commercially available counterparts H(2)IMes(PCy(3))Cl(2)Ru[double bond, length as m-dash]CH-Ph and H(2)IMesCl(2)Ru[double bond, length as m-dash]CH-(C(6)H(4)-O-iPr) (H(2)IMes = 1,3-bis(2',4',6'-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene) and perform at similar rates during ring closing metathesis (RCM) of diethyldiallylmalonate (DEDAM). Upon addition of 2 equiv. of HCl, catalyst is converted into a mixture of several mono and diprotonated Ru-carbene species 12' which are soluble in methanol but degrade within a few hours at room temperature. Catalyst can be protonated with 2 equiv. of HCl and the resulting complex is moderately water-soluble. The complex is stable in aqueous solution in air for >4 h, but over prolonged periods of time shows degradation in acidic media due to hydrolysis of the NHC-Ru bond. Catalysts and perform RCM of diallylmalonic acid in acidic protic media with only moderate activity at 50 degrees C and do not produce polymer in the ROMP of cationic 7-oxanorbornene derivative under the same conditions. Catalyst was used for Ru-seperation studies when RCM of DEDAM or 3,3-diallypentadione (DAP) was conducted in low-polar organic solution and the Ru-species was subsequently precipitated by addition of strong acid. The Ru-species were removed by (1) filtration and (2) filtration and subsequent extraction with water. The residual Ru-levels could be reduced to as far as 11 ppm (method 2) and 24 ppm (method 1) without the use of chromatography or other scavenging methods.