Formation, structure, and reactivity of amino-terminated organic films on silicon substrates

J Colloid Interface Sci. 2009 Jan 1;329(1):114-9. doi: 10.1016/j.jcis.2008.09.031. Epub 2008 Oct 18.

Abstract

Amino-functionalized organic films were prepared by self-assembling 3-aminopropyltriethoxysilane (APTES) on silicon wafers in either anhydrous toluene or phosphate-buffered saline (PBS) for varied deposition times. Fourier transform infrared spectroscopy (FTIR) and ellipsometry have shown that the structure and thickness of APTES films are governed by the deposition time and reaction solution. Deposition from an anhydrous toluene solution produces APTES films ranging from 10 to 144 A in thickness, depending on the reaction time. FTIR spectra indicate that film growth initially proceeds by adsorption of APTES to the silicon surface followed by siloxane condensation, and after an extended period of time APTES molecules accumulate on the underlying APTES film by either covalent or noncovalent interactions. In contrast, spectroscopically indistinguishable APTES films in thickness ranging from 8 to 13 A were formed when deposition was conducted in aqueous solutions. Measured water contact angles indicate that APTES films deposited in aqueous solutions are more hydrophilic compared to those prepared in toluene solutions. Fluorescence measurements revealed that APTES films prepared in toluene solutions contain more reactive surface amino groups by ca. 3 to 10 times than those prepared in aqueous solutions for the identical reaction time.