MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration

J Nucl Med. 2008 Nov;49(11):1875-83. doi: 10.2967/jnumed.107.049353. Epub 2008 Oct 16.

Abstract

For quantitative PET information, correction of tissue photon attenuation is mandatory. Generally in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating radionuclide source, or from the CT scan in a combined PET/CT scanner. In the case of PET/MRI scanners currently under development, insufficient space for the rotating source exists; the attenuation map can be calculated from the MR image instead. This task is challenging because MR intensities correlate with proton densities and tissue-relaxation properties, rather than with attenuation-related mass density.

Methods: We used a combination of local pattern recognition and atlas registration, which captures global variation of anatomy, to predict pseudo-CT images from a given MR image. These pseudo-CT images were then used for attenuation correction, as the process would be performed in a PET/CT scanner.

Results: For human brain scans, we show on a database of 17 MR/CT image pairs that our method reliably enables estimation of a pseudo-CT image from the MR image alone. On additional datasets of MRI/PET/CT triplets of human brain scans, we compare MRI-based attenuation correction with CT-based correction. Our approach enables PET quantification with a mean error of 3.2% for predefined regions of interest, which we found to be clinically not significant. However, our method is not specific to brain imaging, and we show promising initial results on 1 whole-body animal dataset.

Conclusion: This method allows reliable MRI-based attenuation correction for human brain scans. Further work is necessary to validate the method for whole-body imaging.

MeSH terms

  • Artifacts*
  • Brain / diagnostic imaging*
  • Databases, Factual
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Pattern Recognition, Automated / methods*
  • Positron-Emission Tomography / methods*
  • Reproducibility of Results
  • Tomography, X-Ray Computed
  • Whole Body Imaging