Low-Density Lipoprotein concentration in the normal Left Coronary Artery tree

Biomed Eng Online. 2008 Oct 17:7:26. doi: 10.1186/1475-925X-7-26.

Abstract

Background: The blood flow and transportation of molecules in the cardiovascular system plays a crucial role in the genesis and progression of atherosclerosis. This computational study elucidates the Low Density Lipoprotein (LDL) site concentration in the entire normal human 3D tree of the LCA.

Methods: A 3D geometry model of the normal human LCA tree is constructed. Angiographic data used for geometry construction correspond to end-diastole. The resulted model includes the LMCA, LAD, LCxA and their main branches. The numerical simulation couples the flow equations with the transport equation applying realistic boundary conditions at the wall.

Results: High concentration of LDL values appears at bifurcation opposite to the flow dividers in the proximal regions of the Left Coronary Artery (LCA) tree, where atherosclerosis frequently occurs. The area-averaged normalized luminal surface LDL concentrations over the entire LCA tree are, 1.0348, 1.054 and 1.23, for the low, median and high water infiltration velocities, respectively. For the high, median and low molecular diffusivities, the peak values of the normalized LDL luminal surface concentration at the LMCA bifurcation reach 1.065, 1.080 and 1.205, respectively. LCA tree walls are exposed to a cholesterolemic environment although the applied mass and flow conditions refer to normal human geometry and normal mass-flow conditions.

Conclusion: The relationship between WSS and luminal surface concentration of LDL indicates that LDL is elevated at locations where WSS is low. Concave sides of the LCA tree exhibit higher concentration of LDL than the convex sides. Decreased molecular diffusivity increases the LDL concentration. Increased water infiltration velocity increases the LDL concentration. The regional area of high luminal surface concentration is increased with increasing water infiltration velocity. Regions of high LDL luminal surface concentration do not necessarily co-locate to the sites of lowest WSS. The degree of elevation in luminal surface LDL concentration is mostly affected from the water infiltration velocity at the vessel wall. The paths of the velocities in proximity to the endothelium might be the most important factor for the elevated LDL concentration.

MeSH terms

  • Blood Flow Velocity / physiology*
  • Blood Pressure / physiology*
  • Computer Simulation
  • Coronary Vessels / physiology*
  • Humans
  • Lipoproteins, LDL / blood*
  • Lipoproteins, LDL / physiology*
  • Models, Cardiovascular*
  • Reference Values

Substances

  • Lipoproteins, LDL