Naphthalene sulfonate functionalized dendrimers at the solid-liquid interface: influence of core type, ionic strength, and competitive ionic adsorbates

Langmuir. 2008 Nov 4;24(21):12398-404. doi: 10.1021/la8020996. Epub 2008 Oct 4.

Abstract

The adsorption of naphthalene disulfonic acid surface-functionalized dendrimers (generation 4) on to colloidal alumina particles is reported, considering the role of dendrimer core type (ammonia vs benzylhydrylamine-polylysine) and electrolyte addition on the adsorption affinity and interfacial packing and competitive adsorption. Irrespective of the dendrimer core type, the maximum adsorbed amount increased with increasing ionic strength. The adsorption affinity of a benzylhydrylamine-cored SPL-7013 increased with increasing ionic strength, whereas a decrease was observed for the ammonia-cored SPL-2923. At high ionic strengths (>or=10(-1) M NaCl) dendrimers close pack at the interface as an array of equivalent hard spheres, whereas at lower ionic strengths both dendrimers occupy a lower area than theoretically predicted for either cubic or hexagonal close packing, based on double layer repulsion. The additional attraction between dendrimers is attributed to the intercalation of the neighboring dendrons. Adsorption of SPL-2923 is enhanced by the presence of Ca2+ ions and depressed by the presence of HCO3- and HPO4(2-) ions, whereas SPL-7013 adsorption is only depressed by the presence of HPO4(2-) ions, suggesting a dendrimer-specific competitive adsorption process. This work clearly demonstrates the role of dendrimer architecture on adsorption at an interface, a process of fundamental importance to a wide range of dendrimer applications.