Regulation of DARPP-32 phosphorylation by three distinct dopamine D1-like receptor signaling pathways in the neostriatum

J Neurochem. 2008 Nov;107(4):1014-26. doi: 10.1111/j.1471-4159.2008.05702.x. Epub 2008 Sep 24.

Abstract

Dopamine D(1)-like receptors play a key role in dopaminergic signaling. In addition to G(s/olf)/adenylyl cyclase (AC)-coupled D(1) receptors, the presence of D(1)-like receptors coupled to G(q)/phospholipase C (PLC) has been proposed. Benzazepine D(1) receptor agonists are known to differentially activate G(s/olf)/AC and G(q)/PLC signaling. By utilizing SKF83959 and SKF83822, we investigated the D(1)-like receptor signaling cascades, which regulate DARPP-32 phosphorylation at Thr34 (the PKA-site) in mouse neostriatal slices. Treatment with SKF83959 or SKF83822 increased DARPP-32 phosphorylation. The SKF83959- and SKF83822-induced increase in DARPP-32 phosphorylation was largely, but partially, antagonized by a D(1) receptor antagonist, SCH23390, and the residual SCH23390-insensitive increase was abolished by an adenosine A(2A) receptor antagonist. In addition, the SKF83959-induced, SCH23390-sensitive increase in DARPP-32 phosphorylation was enhanced by a PLC inhibitor. Analysis in slices from D(1)R/D(2)R-DARPP-32 mice revealed that both D(1) receptor agonists regulate DARPP-32 phosphorylation in striatonigral, but not in striatopallidal, neurons. Thus, dopamine D(1)-like receptors are coupled to three signaling cascades in striatonigral neurons: (i) SCH23390-sensitive G(s/olf)/AC/PKA, (ii) adenosine A(2A) receptor-dependent G(s/olf)/AC/PKA, and (iii) G(q)/PLC signaling. Interestingly, G(q)/PLC signaling interacts with SCH23390-sensitive G(s/olf)/AC/PKA signaling, resulting in its inhibition. Three signaling cascades activated by D(1)-like receptors likely play a distinct role in dopaminergic regulation of psychomotor functions.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine / analogs & derivatives
  • 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine / pharmacology
  • Animals
  • Cyclosporine / pharmacology
  • Dopamine Agents / pharmacology
  • Dopamine and cAMP-Regulated Phosphoprotein 32 / metabolism*
  • Dose-Response Relationship, Drug
  • Drug Interactions
  • Enzyme Inhibitors / pharmacology
  • Estrenes / pharmacology
  • In Vitro Techniques
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Models, Biological
  • Neostriatum / drug effects
  • Neostriatum / metabolism*
  • Phosphorylation / drug effects
  • Pyrrolidinones / pharmacology
  • Receptors, Dopamine D1 / agonists
  • Receptors, Dopamine D1 / antagonists & inhibitors
  • Receptors, Dopamine D1 / physiology*
  • Signal Transduction / drug effects
  • Signal Transduction / physiology*
  • Threonine / metabolism
  • Time Factors

Substances

  • Dopamine Agents
  • Dopamine and cAMP-Regulated Phosphoprotein 32
  • Enzyme Inhibitors
  • Estrenes
  • Ppp1r1b protein, mouse
  • Pyrrolidinones
  • Receptors, Dopamine D1
  • 1-(6-((3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione
  • Threonine
  • 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine
  • SK&F 83959
  • Cyclosporine