Increasing the structural complexity of chromium(IV) oxides by high-pressure and high-temperature reactions of CrO2

Inorg Chem. 2008 Oct 6;47(19):8526-42. doi: 10.1021/ic801015b.

Abstract

This work presents an overview of a series of increasingly complex oxides synthesized from CrO 2, under high-pressure and high-temperature conditions, having Cr (4+) in octahedral coordination. Although the emphasis is on the structure and microstructure of the compounds as obtained from X-ray diffraction and transmission electron microscopy and diffraction, attention is also given to their interesting electronic and magnetic properties. The study is complemented with an electron energy loss spectroscopic analysis of the different phases. These are the cubic perovskite SrCrO 3, the orthorhombic perovskite CaCrO 3, the solid solution Sr 1-xCa xCrO 3, the Ruddlesden-Popper-type Sr 3Cr 2O 7, the family CrSr 2RECu 2O 8 (RE = rare earth), a compositionally modulated perovskite "PbCrO 3", and the misfit layer oxide SrO 2[CrO 2] 1.85.