High-connectivity networks and hybrid inorganic rod materials built from potassium and rubidium p-halide-substituted aryloxides

Inorg Chem. 2008 Oct 20;47(20):9583-91. doi: 10.1021/ic801140u. Epub 2008 Sep 26.

Abstract

A series of complex networks have been synthesized from the association of potassium and rubidium p-halide-substituted aryloxides using 1,4-dioxane molecules as neutral linkers. The crystalline polymers [(4-F-C6H4OK)6 x (dioxane)4]infinity (1), [(4-I-C6H4OK)6 x (dioxane)6]infinity (2), and [(4-I-C6H4ORb)6 x (dioxane)6]infinity (3) are built from discreet, hexameric M6O6 aggregates. Compound 1 forms an unusual 16-connected framework involving both K-F and K-O(diox) interactions. Each hexamer connects to eight neighboring aggregates through double-bridging contacts, resulting in a body-centered cubic (bcu) topology. Compounds 2 and 3 are isostructural, 12-connected networks, where each aggregate utilizes six dioxane double bridges to form primitive cubic (pcu) nets. In contrast, the complexes [(4-Cl-C6H4OK)3 x (dioxane)]infinity (4), [(4-Br-C6H4OK)2 x (dioxane)0.5]infinity (5), and [(4-Br-C6H4ORb)5 x (dioxane)5]infinity (6) are built from one-dimensional (1D) inorganic rods composed solely of M-O(Ar) interactions. The extended structures of both 4 and 5 can be described as pcu nets, where parallel 1D inorganic pillars are connected through dioxane bridges. Compound 6 is also composed of parallel 1D inorganic rods, but in this instance the coordinated dioxane molecules do not bridge, resulting in isolated, close-packed chains in the solid state.