Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes

Mol Cell Endocrinol. 2008 Dec 16;296(1-2):32-40. doi: 10.1016/j.mce.2008.08.019. Epub 2008 Aug 28.

Abstract

The mechanisms by which androgens regulate fat mass are poorly understood. Although testosterone has been reported to increase lipolysis and inhibit lipid uptake, androgen effects on proliferation and differentiation of human mesenchymal stem cells (hMSCs) and preadipocytes have not been studied. Here, we investigated whether dihydrotestosterone (DHT) regulates proliferation, differentiation, or functional maturation of hMSCs and human preadipocytes from different fat depots. DHT (0-30 nM) dose-dependently inhibited lipid accumulation in adipocytes differentiated from hMSCs and downregulated expression of aP2, PPARgamma, leptin, and C/EBPalpha. Bicalutamide attenuated DHT's inhibitory effects on adipogenic differentiation of hMSCs. Adipocytes differentiated in presence of DHT accumulated smaller oil droplets suggesting reduced extent of maturation. DHT decreased the incorporation of labeled fatty acid into triglyceride, and downregulated acetyl CoA carboxylase and DGAT2 expression in adipocytes derived from hMSCs. DHT also inhibited lipid accumulation and downregulated aP2 and C/EBPalpha in human subcutaneous, mesenteric and omental preadipocytes. DHT stimulated forskolin-stimulated lipolysis in subcutaneous and mesenteric preadipocytes and inhibited incorporation of fatty acid into triglyceride in adipocytes differentiated from preadipocytes from all fat depots.

Conclusions: DHT inhibits adipogenic differentiation of hMSCs and human preadipocytes through an AR-mediated pathway, but it does not affect the proliferation of either hMSCs or preadipocytes. Androgen effects on fat mass represent the combined effect of decreased differentiation of fat cell precursors, increased lipolysis, and reduced lipid accumulation.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adipocytes / drug effects*
  • Adipocytes / physiology
  • Adipogenesis / drug effects
  • Adult
  • Animals
  • Cell Differentiation / drug effects*
  • Cell Proliferation / drug effects*
  • Cells, Cultured
  • Dihydrotestosterone / pharmacology*
  • Epididymis
  • Humans
  • Lipolysis / drug effects
  • Male
  • Mesenchymal Stem Cells / drug effects*
  • Mesenchymal Stem Cells / physiology
  • Mice
  • Mice, Inbred C57BL
  • Middle Aged
  • Orchiectomy
  • Receptors, Androgen / physiology
  • Signal Transduction / drug effects
  • Signal Transduction / physiology

Substances

  • Receptors, Androgen
  • Dihydrotestosterone