Neural correlates of heart rate variability during emotion

Neuroimage. 2009 Jan 1;44(1):213-22. doi: 10.1016/j.neuroimage.2008.07.056. Epub 2008 Aug 9.

Abstract

The vagal (high frequency [HF]) component of heart rate variability (HRV) predicts survival in post-myocardial infarction patients and is considered to reflect vagal antagonism of sympathetic influences. Previous studies of the neural correlates of vagal tone involved mental stress tasks that included cognitive and emotional elements. To differentiate the neural substrates of vagal tone due to emotion, we correlated HF-HRV with measures of regional cerebral blood flow (rCBF) derived from positron emission tomography (PET) and (15)O-water in 12 healthy women during different emotional states. Happiness, sadness, disgust and three neutral conditions were each induced by film clips and recall of personal experiences (12 conditions). Inter-beat intervals derived from electrocardiographic recordings during the 60-second scans were spectrally-analyzed, generating 12 separate measures of HF-HRV in each subject. The six emotion and six neutral conditions were grouped together and contrasted. We observed substantial overlap between emotion-specific rCBF and the correlation between emotion-specific rCBF and HF-HRV, particularly in the medial prefrontal cortex. Emotion-specific rCBF also correlated with HF-HRV in the caudate nucleus, periacqueductal gray and left mid-insula. We also observed that the elements of cognitive control inherent in this experiment (that involved focusing on the target mental state) had definable neural substrates that correlated with HF-HRV and to a large extent differed from the emotion-specific correlates of HF-HRV. No statistically significant asymmetries were observed. Our findings are consistent with the view that the medial visceromotor network is a final common pathway by which emotional and cognitive functions recruit autonomic support.

MeSH terms

  • Adult
  • Autonomic Nervous System / physiology
  • Brain / blood supply
  • Brain / physiology*
  • Brain Mapping*
  • Cerebrovascular Circulation / physiology*
  • Electrocardiography
  • Emotions / physiology*
  • Female
  • Heart Rate / physiology*
  • Humans
  • Image Interpretation, Computer-Assisted
  • Positron-Emission Tomography