Why does fluoride anion accelerate transmetalation between vinylsilane and palladium(II)-vinyl complex? Theoretical study

J Am Chem Soc. 2008 Oct 1;130(39):12975-85. doi: 10.1021/ja801362e. Epub 2008 Sep 4.

Abstract

Transmetalation between palladium(II)-vinyl complex and vinylsilane was theoretically investigated with the DFT and MP2 to MP4 methods to clarify the reaction mechanism and the reasons why fluoride anion accelerates the Pd-catalyzed cross-coupling reaction between vinyl iodide and vinylsilane. This transmetalation occurs with a very large activation barrier (45.8 kcal/mol) and a very large endothermicity (25.6 kcal/mol) in the absence of fluoride anion, where the potential energy change resulting from the solvation effect is evident. This is consistent with the experimental fact that this cross-coupling reaction does not proceed well in the absence of fluoride anion. The effects of fluoride anion were investigated in three possible reaction courses. In the first course, fluorovinylsilicate anion is formed before the transmetalation, and it reacts with the palladium(II)-vinyl complex. In the second course, an iodo ligand is substituted for fluoride anion, and then the transmetalation occurs between the palladium(II)-fluoro-vinyl complex and vinylsilane. In the third course, fluoride anion attacks the Si center of vinylsilane in the transition state of the transmetalation between the palladium(II)-iodo-vinyl complex and vinylsilane. Our theoretical calculation suggests that fluorovinylsilicate anion is not formed in the case of trimethylvinylsilane. In the second and third cases, the transmetalation occurs with a moderate activation barrier (E(a)) and a considerably large exothermicity (E(exo)): E(a) = 25.3 kcal/mol and E(exo) = 5.7 kcal/mol in the second course, and E(a) = 12.7 kcal/mol and E(exo) = 24.8 kcal/mol in the third course, indicating that fluoride anion accelerates the transmetalation via the second and third reaction courses. The acceleration of transmetalation by fluoride anion is clearly interpreted in terms of the formation of a very strong Si-F bond and the stabilization of the transition state by the hypervalent Si center, which is induced by the fluoride anion. Our computational results show that hydroxide anion accelerates the transmetalation in a manner similar to that observed with fluoride anion. From these results, we predict that the electronegative anion accelerates this transmetalation because the electronegative group forms a strong covalent bond with the silyl group and facilitates the formation of the hypervalent Si center in the transition state.