Bacterial succession within an ephemeral hypereutrophic Mojave Desert playa Lake

Microb Ecol. 2009 Feb;57(2):307-20. doi: 10.1007/s00248-008-9426-3. Epub 2008 Aug 30.

Abstract

Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by approximately 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of approximately 1x10(6) cells ml(-1) of culturable heterotrophs was replaced by a dense population of more than 1x10(9) cells ml(-1), which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacteria / classification
  • Bacteria / genetics*
  • Bacteria / isolation & purification
  • California
  • Colony Count, Microbial
  • DNA, Bacterial / genetics
  • Desert Climate*
  • Ecosystem
  • Gene Library
  • Geologic Sediments / chemistry
  • Geologic Sediments / microbiology
  • Phylogeny
  • Plankton / classification
  • Plankton / genetics
  • Plankton / isolation & purification
  • RNA, Ribosomal, 16S / genetics
  • Seasons*
  • Water Microbiology*

Substances

  • DNA, Bacterial
  • RNA, Ribosomal, 16S