Open-loop correction of horizontal turbulence: system design and result

Appl Opt. 2008 Aug 10;47(23):4297-301. doi: 10.1364/ao.47.004297.

Abstract

Adaptive optics systems often work in a closed-loop configuration due to the hysteretic and nonlinearity properties of conventional deformable mirrors. Because of the high-precision wavefront generation and nonhysteretic properties of liquid-crystal devices, the open-loop control becomes possible. Open-loop control is a requirement for advanced adaptive optics concepts. We designed an open-loop adaptive optics system with a liquid-crystal-on-silicon wavefront corrector. This system is simple, fast, and can save much more light compared to conventional liquid-crystal-based closed-loop systems. The detailed principle, construction, and operation are discussed. The 500 m horizontal turbulence correction experiment was done using a 250 mm telescope in the laboratory. The whole system can reach a 60 Hz correction frequency. Evaluation of the correction precision was done at closed-loop configuration, which is 0.2 lambda (lambda=0.633 microm) in peak to valley. The dynamic image under open-loop correction got the same resolution compared to closed-loop correction. The whole system reached 0.68 arc sec resolution capability at open-loop correction, which is slightly larger than the system's diffraction-limited resolution of 0.65 arc sec.