Towards an implantable biochip for glucose and lactate monitoring using microdisc electrode arrays (MDEAs)

Biomed Microdevices. 2009 Feb;11(1):75-85. doi: 10.1007/s10544-008-9211-6.

Abstract

A complete electrochemical cell-on-a-chip that uses the MicroDisc Electrode Array (MDEA) working electrode (WE) design was evaluated for eventual intramuscular implantation for the continuous amperometric monitoring of glucose and lactate in an animal trauma model. The microfabricated ECC MDEA5037 comprises two discrete electrochemical cells-on-a-chip (ECCs), each with a reference, counter, and MDEA working electrode. Each MDEA comprises 37 microdiscs (diameter = 50 microm) arranged in a Hexagonal Closed Packed (HCP) arrangement with a center to center distance (d) of 100 microm. Cyclic Voltammetry (CV) and Electrical Impendence Spectroscopy (EIS) reveals that this device scales in its interfacial properties with a corresponding MDEA 050 device that comprises 5,184 microdiscs. Parallel development of miniaturized mixed-signal integrated electronics for wireless reprogramming, data acquisition and communication addresses the key issues involved in developing measurement electronics, AD/DA processing, power management and telemetry for implantable amperometric biosensors. A generalized electronics platform based on the Texas Instruments TI NC01101 chip has been developed that may be readily applied to many types of biotransducers with minor modifications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biosensing Techniques / instrumentation*
  • Biosensing Techniques / methods*
  • Electrodes, Implanted
  • Glucose / analysis*
  • Lactic Acid / analysis*
  • Prostheses and Implants*
  • Transducers*

Substances

  • Lactic Acid
  • Glucose