Databases applicable to quantitative hazard/risk assessment--towards a predictive systems toxicology

Toxicol Appl Pharmacol. 2008 Nov 15;233(1):34-44. doi: 10.1016/j.taap.2007.12.036. Epub 2008 Jul 2.

Abstract

The Workshop on The Power of Aggregated Toxicity Data addressed the requirement for distributed databases to support quantitative hazard and risk assessment. The authors have conceived and constructed with federal support several databases that have been used in hazard identification and risk assessment. The first of these databases, the EPA Gene-Tox Database was developed for the EPA Office of Toxic Substances by the Oak Ridge National Laboratory, and is currently hosted by the National Library of Medicine. This public resource is based on the collaborative evaluation, by government, academia, and industry, of short-term tests for the detection of mutagens and presumptive carcinogens. The two-phased evaluation process resulted in more than 50 peer-reviewed publications on test system performance and a qualitative database on thousands of chemicals. Subsequently, the graphic and quantitative EPA/IARC Genetic Activity Profile (GAP) Database was developed in collaboration with the International Agency for Research on Cancer (IARC). A chemical database driven by consideration of the lowest effective dose, GAP has served IARC for many years in support of hazard classification of potential human carcinogens. The Toxicological Activity Profile (TAP) prototype database was patterned after GAP and utilized acute, subchronic, and chronic data from the Office of Air Quality Planning and Standards. TAP demonstrated the flexibility of the GAP format for air toxics, water pollutants and other environmental agents. The GAP format was also applied to developmental toxicants and was modified to represent quantitative results from the rodent carcinogen bioassay. More recently, the authors have constructed: 1) the NIEHS Genetic Alterations in Cancer (GAC) Database which quantifies specific mutations found in cancers induced by environmental agents, and 2) the NIEHS Chemical Effects in Biological Systems (CEBS) Knowledgebase that integrates genomic and other biological data including dose-response studies in toxicology and pathology. Each of the public databases has been discussed in prior publications. They will be briefly described in the present report from the perspective of aggregating datasets to augment the data and information contained within them.

Publication types

  • Review

MeSH terms

  • Animals
  • Databases, Factual / trends*
  • Evaluation Studies as Topic
  • Forecasting
  • Hazardous Substances / toxicity*
  • Humans
  • Information Systems / trends*
  • Risk Assessment
  • United States
  • United States Environmental Protection Agency / standards
  • United States Environmental Protection Agency / trends

Substances

  • Hazardous Substances