Flow-dependent optofluidic particle trapping and circulation

Lab Chip. 2008 Aug;8(8):1350-6. doi: 10.1039/b805318a. Epub 2008 Jun 23.

Abstract

Microfluidics and fiber optics are integrated in-plane to achieve several flow-dependent particle trapping mechanisms on-chip. Each mechanism results from a combination of fluid drag and optical scattering forces. Parallel and offset fibers, orthogonally oriented to the flow, show cyclic cross-stream particle transit with flow-dependent particle trajectories and loss. Upstream-angled fibers with flow result in circulatory particle trajectories. Asymmetric angled fibers result in continuous particle circulation whereas symmetry with respect to the flow axis enables both stable trapping and circulation modes. Stable trapping of single particles, self-guided multi-particle arrays and particle assemblies are demonstrated with a single upstream-oriented fiber. Size tuning of trapped multiple particle assemblies is also presented. The planar interaction of fluid drag and optical forces results in novel possibilities for cost-effective on-chip diagnostics, mixing, flow rate monitoring, and cell analysis.